Call to the Audience Guidelines

- 2 Call to the Audience opportunities
- Must fill out participant card
- Participants called in the order cards are received
- 3 minutes allowed per participant
- CTF Facilitator will call on speakers and manage time
- CTF members cannot discuss matters raised
- CTF cannot take action on matters raised
- CTF members can ask project team to review an item

Meeting Agenda

1. Call to Order/Agenda Review/Announcements
2. 1st Call to the Audience
3. Public Input Report, and Reports on Project Presentations & Outreach
4. Review Potential Cross Sections and Performance Assessments, and Endorse a Representative Set of them to Move Forward into Review by Stakeholder Agencies
5. Initial Discussion of September Public Meeting #3
6. 2nd Call to the Audience
7. Next Steps/CTF Roundtable
8. Adjourn

Call to the Audience

15 Minutes
Please limit comments to 3 minutes
- Called forward in order received
- CTF members cannot discuss matters raised
- CTF cannot take action on matters raised
- CTF members can ask project team to review an item

Review Public Input Report

Jenn Toothaker

Public Input Report consists of a spreadsheet and attachments:
- Spreadsheet = Input received from 5/9/2013 - 5/20/2013
- Attachments = Documentation of only new input received

Reports: Past and Upcoming Project Presentations & Outreach

- May 22, 2013 RTA CART Meeting – Doug Mance
- June 3, 2013 CTAC Meeting – Farhad Moghimi
Review Potential Cross Sections and Performance Assessments, and Endorse a Representative Set of them to Move Forward into Review by Stakeholder Agencies

Phil Erickson
Community Design + Architecture

Mike Johnson
HDR Engineering

Jim Schoen
Kittelson & Associates

Agenda for this item

• Tonight we will discuss, and refine or add to—
 - 9 draft cross section concepts
 - How they fit within the east and west of Campbell prototypical sections
 - How they relate to existing roadway, right of way, and building front to building front distances
 - How they performed in an assessment against the 24 performance measures that are applicable at this level of design (an additional 29 measures will be evaluated in the future)

Draft Cross Section Concept Options

• Four families of section concept types
 - 4 mixed-flow travel lanes (3 concepts)
 - 4 mixed-flow travel lanes + transit (2 concepts)
 - 6 mixed-flow travel lanes (2 concepts)
 - 6 mixed-flow travel lanes + transit (2 concepts)

• Range of concepts
 - Include different facilities for pedestrians, bicycles, transit, and vehicles
 - In response to input from the public, stakeholder agencies, and the CTF
 - Evolving Goals and definition of “functionality”
 - Evolving set of design parameters and criteria (i.e.; min. lane widths, target speed, landscape maintenance requirements, etc.)

Four Lane
Potential R.O.W. Range – 67 to 134 feet

Four Lane
Potential R.O.W. Range – 67 to 134 feet

Four Lane
Potential R.O.W. Range – 67 to 134 feet

Four Lane
Potential R.O.W. Range – 67 to 134 feet

Option 4A: 67’ Right-of-Way

Option 4B: 100’ Right-of-Way

Option 4C: 112’ Right-of-Way
Four Lane + Transit
Potential R.O.W. Range – 89 to 156 feet

Option 4+T A: 118’ Right-of-Way

Option 4+T B: 152’ Right-of-Way

Six Lane
Potential R.O.W. Range – 89 to 152 feet

Option 6A: 114’ Right-of-Way

Option 6B: 152’ Right-of-Way

Six Lane
Potential R.O.W. Range – 89 to 152 feet

Six Lane + Transit
Potential R.O.W. Range – 109 to 172 feet

Option 6: 152’ Right-of-Way

Option 6+T A: 146’ Right-of-Way
Six Lane + Transit
Potential R.O.W. Range – 109 to 172 feet

Exploration of “Fitting” Cross Section Concepts in Existing Conditions

- Illustrate prototypical conditions along Broadway
- How Cross Section Concepts can be integrated to:
 - Avoid potential impacts to parking and buildings
 - Reduce potential for property acquisition
 - Maximize positive impacts to character of the street and its context
 - Maximize support for walking, biking, and transit
- Begins to illustrate positive and negative impacts that will be more fully assessed during the alignment design process
- Range of design parameters related to context and particular street elements
 - Commercial building frontages
 - Visibility
 - Parking and access
 - Walkways and sidewalks
 - Residential building frontages
 - Privacy
 - Landscaped and setback
 - Flexibility in width for various street design elements – “section cards”
 - Potential to enhance some elements of Cross Section Concepts if space allows (i.e., additional landscape, sidewalk, or other space within the cross section)

Existing Prototypical West of Campbell

Option 4A: Modified 90’ Right-of-Way (matching existing R.O.W)

Four Lane Prototypical West of Campbell

Four Lane + Transit Prototypical West of Campbell

Option 4+T A: Modified 112’ Right-of-Way

Six Lane + Transit Prototypical West of Campbell

Option 6+T A: 146’ Right-of-Way
Existing Prototypical East of Campbell

Existing Condition: 80’ Right-of-Way

Four Lane Prototypical East of Campbell

Option 4A: Modified 138’ Right-of-Way
(58’ roadway width maintaining existing parking and buildings)

Six Lane Prototypical East of Campbell

Option 6A: Modified 138’ Right-of-Way
including parking and public sidewalks at building fronts

Six Lane + Transit Prototypical East of Campbell

Relationship to Existing Conditions of Right of Way

 Highland Avenue

Relationship to Existing Conditions of Right of Way
Performance Measure Assessment

• Transportation topic areas
 – Pedestrian Access and Mobility
 – Bicycle Access and Mobility
 – Transit Access and Mobility
 – Vehicular Access and Mobility

• Non-Transportation topic areas
 – Sense of Place
 – Environment/Public Health
 – Economic Vitality
 – Project Cost

Relationship to Existing Conditions of Right of Way
Pedestrian Access and Mobility

1a. Functionality of Streetside for Pedestrian Activity
1b. Separation from Vehicular Traffic
1c. Pedestrian-Oriented Facilities or Improvements
1d. Walkable Network/Neighborhood Connections
1e. Pedestrian Crossings
1f. Vehicle/Pedestrian Conflicts at Driveways
1g. Universal Design
1h. Walkable Destinations
1i. Ease of Transition to Walking

Pedestrian Access and Mobility

1a. Functionality of Streetside for Pedestrian Activity

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Is there enough width to support desired activity, landscaping, street furnishings and other improvements</td>
<td>• Meet or exceed ITE Walkable Thoroughfare Manual guidance</td>
<td>• Width of pedestrian/landscape area, infrastructure provided in area</td>
</tr>
<tr>
<td>Ability to Effect</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Ability to Evaluate</td>
<td>High for this point in process</td>
<td></td>
</tr>
</tbody>
</table>

1b. Separation from Vehicular Traffic

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Width and design character of area between outside edge of vehicle lane and sidewalk</td>
<td>• Width meets or exceed ITE Walkable Thoroughfare Manual guidance, frequency and quality of street trees or other large landscape</td>
<td>• Width of landscape area, width of bicycle lane, frequency and quality of large landscape</td>
</tr>
<tr>
<td>Ability to Effect</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

Functionality of Streetside for Pedestrian Activity

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pedestrian Access and Mobility

1b. Separation from Vehicular Traffic

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functionality of Streetside for Pedestrian Activity

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pedestrian Access and Mobility

1b. Separation from Vehicular Traffic

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functionality of Streetside for Pedestrian Activity

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pedestrian Access and Mobility

1b. Separation from Vehicular Traffic

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functionality of Streetside for Pedestrian Activity

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pedestrian Access and Mobility

1b. Separation from Vehicular Traffic

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functionality of Streetside for Pedestrian Activity

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pedestrian Access and Mobility

1b. Separation from Vehicular Traffic

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functionality of Streetside for Pedestrian Activity

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pedestrian Access and Mobility

1b. Separation from Vehicular Traffic

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functionality of Streetside for Pedestrian Activity

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pedestrian Access and Mobility

1b. Separation from Vehicular Traffic

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functionality of Streetside for Pedestrian Activity

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pedestrian Access and Mobility

1c. Pedestrian-oriented Facilities or Improvements

Description	• Extent of shade, lighting, seating, drinking fountains and other features to serve pedestrian needs and provide for visual interest	
Measurement	• % shade, lighting levels and consistency, number/frequency of design features	Qualitative evaluation
Factors	• Provision for and increase in number of features	
Ability to Effect	• Minimal at the cross section and alignment level, beyond provision of enough pedestrian area to allow for detailed facilities. Evaluation of space is generally covered by measures 1a and 1b.	
Ability to Evaluate	• Moderate at this level of design	Design does not currently include details for streetscape design, but lower cost cross section concepts may allow more budget to be spent on pedestrian facilities

1d. Walkable Network/Neighborhood Connections

Description	• Ability for pedestrians to access neighborhoods and pedestrian network		
Measurement	• Number, length, and quality of connections		
Factors	• Likely varies by quality of environment on Broadway and frequency of crossings	Frequency and quality of connections to adjacent pedestrian network	
Ability to Effect	• High to Moderate		
Ability to Evaluate	• Low	Quality of environment along Broadway is measured through #1a and #1b	Other factors require alignment and crossing design

1e. Pedestrian Crossings

Description	• Ease of crossing Broadway					
Measurement	• Frequency, length, and quality of pedestrian crossings	Time needed to cross street	Signal timing for pedestrian phase (VISSIM analysis)			
Factors	• Width and number of lanes (through and turn)	Width and number of medians	Level of pedestrian comfort in medians	Frequency of crossings	Signal timing design	Wait time for crossing signal (including time in median if two or more light cycles are required to cross)
Ability to Effect	• High					
Ability to Evaluate	• Moderate at this phase – several factors are directly related to cross section design, several are not					

1f. Vehicle/Pedestrian Conflicts at Driveways

Description	• Conflicts between pedestrians and vehicles exist at driveways for site access; strongly related to #2b			
Measurement	• Provision of level pedestrian crossings	Travel speed to vehicles	Frequency of driveways	
Factors	• Width of roadside to accommodate level pedestrian crossings	Target speed and roadway design’s support of speed management	Frequency and width of driveways	Visibility (landscaping, site lines, signage)
Ability to Effect	• High			
Ability to Evaluate	• Moderate	– some factors are directly related to cross section design, several are not		

1g. Universal Design

Description	• Going beyond base requirements of access (ADA) design for people of all ages and abilities		
Measurement	• Provision of access and mobility design elements that achieve Universal Design		
Factors	• All other pedestrian access and mobility factors measure performance related to aspects of universal design	Likely that other factors will be most affected by details of design	Potential to implement design details likely affected by width of roadside and cost of other project elements (lower cost for other elements may allow more budget for Universal Design)
Ability to Effect	• High		
Ability to Evaluate	• Low	Details are not provided by current level of design	

Universal Design

- Quality of environment along Broadway is measured through #1a and #1b,
- Other factors require alignment and crossing design.
- Details are not provided by current level of design.
Pedestrian Access and Mobility

1h. Walkable Destinations

| Description | Presence and access to jobs, homes, shopping, etc.
| Presence of sufficient density of other uses and access from other uses to support market for employment, shopping, etc. |
| Measurement | Determine density of households and jobs within walkable distance of uses along Broadway |
| Factors |
| #1d Walkable Network/Neighborhood Connections
| Potential for jobs, commercial uses, and homes along Broadway
| Ability to Effect | High for #1d
| Uncertain for land use related factors (#5c Broadway as a Destination, #6f Land Use Mix, and other non-transportation performance measures) |
| Ability to Evaluate | Same as #1d
| Low to Moderate for non-transportation performance measures (to be discussed further on Thursday) |

Bicycle Access and Mobility

2a. Separation of Bikes and Arterial Traffic

2b. Bike Conflicts with Crossing Vehicles

2c. Vehicle/Bike Conflicts at Side Streets (combined into 2b)

2d. Pavement Condition

2e. Bike Facility Improvements

2f. Bike Network Connections

2g. Corridor Travel Time

2h. Bike Crossings

Pedestrian Access and Mobility

1i. Ease of Transition to Walking

| Description | The ability of users to become pedestrians |
| Measurement |
| Factors | Proximity and number of parking lots
| Proximity and number of bicycle parking/lockers
| Number of bus stops/transit stations
| Number and type of comfort and safety features (lighting, seats, shade)
| Number of attractions/commercial uses |
| Ability to Effect | High |
| Ability to Evaluate | Not at this level of design |

Bicycle Access and Mobility

2a. Separation of Bikes and Arterial Traffic

2b. Bike Conflicts with Crossing Vehicles (note this includes the 2c perf. measure)

2c. Vehicle/Bike Conflicts at Side Streets (combined into 2b)

2d. Pavement Condition

2e. Bike Facility Improvements

2f. Bike Network Connections

2g. Corridor Travel Time

2h. Bike Crossings

Bicycle Access and Mobility

2d. Pavement Condition
Bicycle Access and Mobility

2e. Bike Facility Improvements

Description	Extent of bike racks, shade, drinking fountains, green pavement (bike boxes, etc.) and other features to serve bicyclists needs
Measurement	% shade, number/frequency of design features, Qualitative evaluation
Factors	Increase in number of features, Continuity of bike treatments through project area
Ability to Effect	Minimal at the cross section and alignment level, beyond provision of enough area in streetside to allow for facilities. Evaluation of space is generally covered by measures 1a and 1b.
Ability to Evaluate	Moderate at this level of design, Design does not currently include this level of design, but lower cost cross section concepts may allow more budget to be spent on bike facilities

2f. Bike Network Connections

Description	Convenience and safety of access to surrounding bike network
Measurement	Number, length, and quality of connections to bike network
Factors	Allowing bikes through any side street closures for vehicles, Provision of bike crossings and proximity to bike network
Ability to Effect	High
Ability to Evaluate	Low at this level of design, Quality of environment along Broadway and crossings are measured through #2a, #2b, and #2h, Other factors require alignment and crossing design

2g. Corridor Travel Time

Description	The time it takes for average and advanced riders to travel the length of Broadway
Measurement	VISSIM analysis of travel time and signal delay
Factors	Signal timing, #2b Bike Conflicts with Crossing Vehicles
Ability to Effect	High
Ability to Evaluate	Not viable at current level of design, Requires alignment and intersection design

Bicycle Access and Mobility

2h. Bike Crossings

Description	Convenience and safety of bike crossings will support bike use
Measurement	Frequency and length of crossings, Average signal delay at crossings (VISSIM analysis)
Factors	Width and number of lanes (through and turn), Width and number of medians, Level of bicycle comfort in medians, Frequency of crossings, Signal timing design (VISSIM analysis)
Ability to Effect	High
Ability to Evaluate	Moderate at this phase – several factors are directly related to cross section design, several are not

Transit Access and Mobility

3a. Distance to Transit Stops
3b. Transit Stop Facilities
3c. Corridor Travel Time
3d. Schedule Adherence
3e. Frequency and Hours of Service
3f. Accommodation of Future High Capacity Transit
3g. Riders per Vehicle

3a. Distance to Transit

Description	Number and location of transit stops and the number of households, jobs, and services within walking distance has an relationship to transit ridership
Measurement	Number of households, jobs, and square feet of commercial use within walking distance of transit stops
Factors	1d. Walkable Network/Neighborhood Connections, 1h. Walkable Destinations, Several non-transportation performance measures
Ability to Effect	Low to Moderate
Ability to Evaluate	Low to None, Other factors require alignment and crossing design, Land use policies related to non-transportation measures are not part of this project
Transit Access and Mobility

3b. Transit Stop Facilities
Description	• Design qualities of transit stops can support transit use
Measurement	• % shade, lighting levels and consistency, number/frequency of other design features, qualitative evaluation by designers and users
Factors	• Provision for and increase in number of features
Ability to Effect	• High
Ability to Evaluate	• Low to Moderate at this level of design, right of way could be increased at transit stops to provide space for facilities, design does not currently include details for streetscape design, but lower cost cross section concepts may allow more budget to be spent on transit facilities

3c. Corridor Travel Time
Description	• Time for traveling the length of the corridor affects transit ridership
Measurement	• VISSIM results accounting for signal timing, transit priority treatments, traffic delay, merges, and boarding time at transit stops
Factors	• Dedicated lanes, transit priority treatments at intersections, level boarding, off-vehicle ticketing, and other measures
Ability to Effect	• Moderate to High
Ability to Evaluate	• Low to Moderate at current level of design (presence of transit only lanes), other factors require higher level of design and commitments from Sun Tran

3d. Schedule Adherence
Description	• Ridership is encouraged by transit that is on time. Some elements of project design can support schedule adherence.
Measurement	• Variation in travel time across a sampling of VISSIM modeling runs
Factors	• Level boarding, off-vehicle ticketing, and other station improvement, dedicated transit lanes and other transit priority features, other factors related to scheduling and transit driver practices are under the purview of Sun Trans and cannot be evaluated by this project
Ability to Effect	• Moderate
Ability to Evaluate	• Low to Moderate at current level of design (presence of transit only lane, likely combine with 3b), other factors require higher level of design and commitments from Sun Tran

3e. Frequency and Hours of Service
Description	• How frequently transit vehicles arrive at a stop and the hours of service can affect transit ridership levels
Measurement	• This is a Sun Trans operations issue for the most part
Factors	• Potential service efficiencies related to other transit performance measures could provide Sun Trans the opportunity to increase service levels along Broadway
Ability to Effect	• Low
Ability to Evaluate	• None

3f. Accommodation of Future High Capacity Transit
Description	• The ability of the roadway and roadside design to accommodate future high capacity transit can ultimately improve performance of design concepts in relation to other transit performance measures, also affects long term viability of the design concept, see 3g Certainty
Measurement	• Provision of dedicated transit lanes, roadside or median width allows for future transit improvements
Factors	• Provision of dedicated transit lanes, roadside or median width allows for future transit improvements
Ability to Effect	• High
Ability to Evaluate	• Low to Moderate at this level of design (provision of dedicated lanes), right of way could be increased at transit stops to provide space for facilities, design does not currently include details of intersection design

3g. Riders per Vehicle
Description	• Efficiencies in number of riders per vehicle, while avoiding overcrowded, improve cost performance of service and potentially cost to riders (also can reduce pollution per person trip)
Measurement	• Average daily rider per transit vehicle, average riders per peak hour transit vehicle, using transportation model and transit service assumptions
Factors	• Other transit performance measures that affect transit ridership and service efficiencies, service planning by Sun Tran
Ability to Effect	• Low to Moderate
Ability to Evaluate	• Cannot be measured at current level of design
Vehicular Access and Mobility

4a. Movement of Through Traffic
4b. Intersection Delay – Overall Intersection Performance
4c. Intersection Delay – Worst Movement
4d. Accident Potential
4e. Lane Continuity
4f. Persons per Vehicle or Person Trips
4g. Access Management Management for Adjacent Properties

Vehicular Access and Mobility

4a. Movement of Through Traffic

Description

A range of corridor and intersection evaluations can measure effectiveness of moving through traffic which can have an affect on a variety of other transportation, environment, and economic factors.

Measurement

Using VISSIM modeling can measure:
- Average corridor travel time
- Average speed
- Average 95 percentile queue length
- Average delay Average corridor travel time
- Volume to Capacity Ratio (V/C)

Factors

- Number of traffic lanes
- Signal design
- Intersection design
- Access management
- Transit service design

Ability to Effect

High

Ability to Evaluate

Moderate at current level of design as only number of traffic lanes and presence of transit only lanes are defined

Vehicular Access and Mobility

4b. Intersection Delay – Overall Intersection Performance

Description

Intersection delay for both Broadway and cross street traffic has an effect on the overall street network in the project area (and potentially beyond)

Measurement

- Traffic modeling
- Average 95 percentile queue length
- Average delay
- Volume to Capacity Ratio (V/C)

Factors

- Number of through and turn lanes
- Length of turn lanes
- Signal design, including crossing time considerations for pedestrians and bicyclists
- Transit priority treatments
- Other intersection design features

Ability to Effect

High

Ability to Evaluate

Low to None
Intersection design is not a part of current design concepts

Vehicular Access and Mobility

4c. Intersection Delay – Worst Movement

Description

Intersection delay for worst movement at intersections has an effect on the overall street network in the project area (and potentially beyond)

Measurement

- Traffic modeling
- Average 95 percentile queue length
- Average delay
- Volume to Capacity Ratio (V/C)

Factors

- Number of through and turn lanes
- Length of turn lanes
- Signal design, including crossing time considerations for pedestrians and bicyclists
- Transit priority treatments
- Other intersection design features

Ability to Effect

High

Ability to Evaluate

Low to None
Intersection design is not a part of current design concepts

Vehicular Access and Mobility

4d. Accident Potential

Description

Certain factors have been identified in the literature as contributing to higher accident rates and severity of accidents

Measurement

Based on review of the literature quantitatively and qualitatively evaluate certain design features and design criteria

Factors

- Number of access points to adjacent properties
- Number of side street access points
- 4e Lane continuity
- Amount of bike lane cross over length
- Others?

Ability to Effect

High

Ability to Evaluate

Low to None at current level of design

Vehicular Access and Mobility

4e. Lane Continuity

Description

Merging the number of lanes in the roadway cross section following an intersection or for other reasons decreases roadway capacity and increases potential for crashes

Measurement

- Analyze performance of lane reductions using VISSIM
- Compare with performance of similar lane reductions in Tucson

Factors

- Number and design of lane drop locations

Ability to Effect

High

Ability to Evaluate

Low to None, currently design concepts do not propose additional through lanes at intersections
Vehicular Access and Mobility

4f. Persons per Vehicle or Person Trips for multiple measures

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-modal measures allowing evaluations on a per person basis</td>
<td>Convert vehicle, transit, and bicycle trips to person trips for the corridor</td>
</tr>
<tr>
<td>Use traffic model and VISSIM to assess different modal performance for:</td>
<td>Other measures as appropriate</td>
</tr>
<tr>
<td>- Corridor travel time</td>
<td></td>
</tr>
<tr>
<td>- Average delay</td>
<td></td>
</tr>
<tr>
<td>- Travel time reliability</td>
<td></td>
</tr>
</tbody>
</table>

Factors

- Number of traffic lanes
- Signal design/timing
- Intersection design
- Access management
- Transit service design
- Bike conflicts with crossing vehicles
- Dedicated transit lanes, transit priority treatments at intersections, level boarding, off-vehicle ticketing, and other measures

Ability to Effect

- High

Ability to Evaluate

- Not viable at current level of design
- Requires alignment and intersection design

Vehicular Access and Mobility

4g. Access Management for Adjacent Properties

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes to curb-cut/driveway access from Broadway to parking and loading for adjacent business to improve traffic flow, reduce conflicts with pedestrians and bicycles, and generally reduce potential for accidents</td>
<td>Quantitative and qualitative evaluation by planning team of reduced conflicts and quality of site access</td>
</tr>
<tr>
<td>Can require shared access with adjacent properties</td>
<td></td>
</tr>
</tbody>
</table>

Factors

- Reduction in number and width of curb-cut/driveway access
- Maintenance of site functionality

Ability to Effect

- High

Ability to Evaluate

- Requires alignment design

Sense of Place

5a. Historic Resources
- The number of historic structures lost due to direct impact
- The number of historic structures with limited usefulness as a result of loss of parking, setback, site access, and other conditions

Measurement

- Count of historic structures lost by category

Factors

- Roadway width
- Streetside area width
- Alignment placement

Ability to Effect

- High

Ability to Evaluate

- Moderate to High at current level of design
- More definitive as intersections and alignment are designed

5b. Visual Quality
- Ability of the roadway design to enhance visual quality using a mix of features

Measurement

- Qualitative assessment (project team and input from CTF)

Factors

- Design of median and streetside landscaping
- Number and location of placemaking features (including public art, wayfinding, lighting, furniture, etc.)
- Width of roadside areas for streetscape elements and landscaping

Ability to Effect

- High

Ability to Evaluate

- Moderate at current level of design
- Design does not currently include details for streetscape design, but lower cost cross section concepts may allow more budget to be spent on visual quality

5c. Broadway as a Destination
- Promote development and civic spaces that would be attractive to users from surrounding neighborhoods, the city, and the region
- Provide visual quality, access, and other features that make Broadway appealing to development and customers

Measurement

- Qualitative evaluation

Factors

- Factors related to 5b Visual Quality
- Coordinate façade improvement, parking management, and other programs and improvements
- Land use regulations supporting development sought

Ability to Effect

- Moderate

Ability to Evaluate

- Low for current level of design and planning
Sense of Place

5d. Gateway to Downtown
Description • Visual quality, ease of mobility, and similar features that improve connection to downtown
Measurement • Qualitative evaluation
Factors • To be determined through discussions with CTF
Ability to Effect • Moderate
Ability to Evaluate • Low to Moderate at current level of design

5e. Conductiveness to Business
Description • The type and size of businesses that would be drawn to the corridor under various development approaches
Measurement • Qualitative evaluation
Factors • To be determined through discussions with CTF and professional experience
- Site access and parking location
- Building size and design accommodated
- Other TBD
Ability to Effect • Moderate
Ability to Evaluate • Low at this level of design

Sense of Place

5f. Walkable Community
Description • How well the improvements and land use plan place businesses within walking distance for a viable number of residences
Measurement • See measures under “1. Pedestrian Access and Mobility”
Factors • See measures and factors under “1. Pedestrian Access and Mobility”
Ability to Effect • Varies
Ability to Evaluate • Varies

5g. Certainty
Description • Relates to comments received, “Do it right this time so it doesn’t have to be done again.”
Measurement • Qualitative evaluation
Factors • Capacity projections
- Ridership projections (bus transit; BRT)
- Flexibility to meet changing transportation needs
Ability to Effect • Moderate to High
Ability to Evaluate • Moderate to High at current level of design
- See also performance measures
 - 1a Functionality of Streetside for Pedestrian Activity
 - 1c Pedestrian-Oriented Facilities or Improvements
 - 4a Movement of Through Traffic
- 4f Persons Trips

Environment/Public Health

6a. Greenhouse Gases
6b. Other Tailpipe Emissions
6c. Heat Island
6d. Water Harvesting
6e. Walkability/Bikability
6f. Land Use Mix
6g. Affordability

6a. Greenhouse Gases
Description • Corridor design features that can reduce CO₂ emission
Measurement • Quantitative analysis
Factors • Proportion alternative modes of transportation
- Level of congestion
- Quality of vehicle fleet, fuel, etc.
Ability to Effect • Moderate
Ability to Evaluate • Not at current level of design
- Some factors ultimately not effected by this project
Environment/Public Health

6b. Other Tailpipe Emissions

Description	Identification and reduction of other important tailpipe emissions, such as particulates
Measurement	Quantitative evaluation
Factors	Proportion alternative modes of transportation, Level of congestion, Quality of vehicle fleet, fuel, etc.
Ability to Effect	Moderate
Ability to Evaluate	Not at current level of design, Some factors ultimately not affected by this project

6c. Heat Island

Description	Determine comparative heat island effect of various alternatives
Measurement	Qualitative and quantitative evaluation
Factors	Reduce roadway and sidewalk pavement contribution to heat gain through a combination of shade, solar reflectivity (high albedo) of materials, and area of pavement, Increase landscaped area, Increase amount of shade
Ability to Effect	High
Ability to Evaluate	Moderate at current level of design (amount of landscaped area & number of trees), High with more detailed design and selection of building materials

6d. Water Harvesting

Description	Retain rainfall onsite to benefit project landscaping
Measurement	TDOT Active Practice Guideline “Green Streets” (draft)
Factors	Width and depth of median and streetside areas, Amount of reduction in runoff on paved areas, Types of materials used (pervious pavement)
Ability to Effect	High
Ability to Evaluate	Moderate at current level of design, High as design is developed further

6e. Walkability/Bikeability

Description	Design elements that will encourage biking and walking over driving
Measurement	See 1. Pedestrian and 2. Bicycle Access and Mobility performance measures
Factors	Number of bike and pedestrian facilities and features, Continuity of treatments, Comfort and security features, SF Walkable Community
Ability to Effect	High to Moderate depending on performance measure
Ability to Evaluate	High to not viable at current level of design depending on performance measure, High to Low depending on performance measure

6f. Land Use Mix

Description	Ability to accommodate mixed use development within walking and biking distance of the Broadway corridor, and to support transit ridership
Measurement	Qualitative analysis
Factors	Support of mixed use by current/future zoning, Determine if, and what type of policy and procedural changes are needed, Count and size of parcels conducive to accommodate desired land use mix
Ability to Effect	Low to indirect
Ability to Evaluate	Not at current level of design, Moderate as design is developed in more detail (i.e.; alignment) and policy issues are discussed

6g. Affordability

Description	Combined housing and transportation costs for users of the Broadway corridor
Measurement	Qualitative evaluation
Factors	Relates to other measures: 1, 2, & 3 – Pedestrian, Bicycle, and Transit Access & Mobility, 5f Walkable Community, 6b Other Tailpipe Emissions, 7g Job Impacts
Ability to Effect	Low
Ability to Evaluate	Not at current level of design and planning
Economic Vitality

7a.–7b. Change in Economic Potential

7c.–7d. Change in Business Revenue

| Description | • Determine current and potential amounts of revenue generated by businesses along the corridor (by segments/not parcel-specific) |
| Measurement | • Analysis by economic and other planning team members
 • City data (confidentiality will be respected)
 • InfoUSA
 • Standard & Poor’s |
| Factors | • Possibly new land use policy and strategic planning for the disposition of remnant parcels (not part of current project scope of work)
 • See 7a-7b Change in Economic Potential |
| Ability to Effect | • To be determined |
| Ability to Evaluate | • Not at current level of design and planning (see 7a-7b Change in Economic Potential) |

7e.–7f. Change in Sales Tax Revenue

7g.–7h. Change in Property Tax Revenue

| Description | • Amount of current and anticipated future property tax generated from the properties along the corridor |
| Measurement | • County Assessor data
 • Qualitative evaluation |
| Factors | • New land use policy and strategic planning for the disposition of remnant parcels (not part of current project scope of work)
 • Width of roadway
 • Placement of alignment
 • See 7a-7b Change in Economic Potential |
| Ability to Effect | • To be determined |
| Ability to Evaluate | • Not at current level of design and planning (see 7a-7b Change in Economic Potential) |

7i. Business Impacts

| Description | • The absolute number and size in terms of annual revenue |
| Measurement | • Quantitative assessment based on InfoUSA data and alignment impact evaluation |
| Factors | • Limit impacts to businesses/properties to one side of roadway at any particular location
 • See 7a-7b Change in Economic Potential |
| Ability to Effect | • To be determined |
| Ability to Evaluate | • Not at current level of design and planning (see 7a-7b Change in Economic Potential) |
Economic Vitality

7j. Job Impacts

Description	• Potential change in number of jobs
Measurement	• Estimate of current and potential future employment in project area (may be challenging to track given business relocations and/or job creation under various alternatives)
Factors	• To be determined
Ability to Effect	• To be determined
Ability to Evaluate	• Not at current level of design and planning (see 7a-7b Change in Economic Potential)

Project Cost

8a. Construction Cost

Description	• Cost of construction
Measurement	• Approximate quantity takeoffs of major cost items (pavement, curb)
Factors	• Width of roadway cross-section
Ability to Effect	• High (ROW acquisition is also a significant cost)
Ability to Evaluate	• Moderate at current level of design (estimates made based on cross sections)

8b. Acquisition Cost

Description	• Cost to acquire needed ROW, including the cost of the property, relocation, and other qualified costs
Measurement	• Quantitative and qualitative evaluation
Factors	• Number and size of property acquisitions
Ability to Effect	• High
Ability to Evaluate	• Low to Moderate at current level of design and planning (estimates made based on cross sections)

8c. Income for Reuse of City-owned Property

Description	• Income from sale or lease of remnant City-owned properties not needed for the project
Measurement	• Qualitative and quantitative analysis by economic and other planning team members to estimate use potential of existing and remnant land
Factors	• See 7a-7b Change in Economic Potential
Ability to Effect	• To be determined
Ability to Evaluate	• Not at current level of design and planning

Initial Discussion of September Public Meeting #3

Jenn Toothaker, Project Manager
City of Tucson Department of Transportation
Broadway’s Planning & Design Phase

We are here

Initial Discussion of Public Meeting #3 September 5, 2013

Task-Related Goals:
- Present
 - Overview of Vision Statement Initial Draft Cross Section Concepts
 - Performance Measures in relation to project goals
 - Initial assessment of concept options
- Small Group Activity
 “Build Your Own Cross-Section”
 - Review concepts and assessments
 - Select a set of preferred concepts to move forward for further evaluation
 - Indicate most important performance measures and goals

Initial Discussion of Public Meeting #3 September 5, 2013

Proposed Meeting Agenda
- Welcome
- Overview Presentation
- Activity / Small Group Discussions at Tables
- Report Outs by Groups
- Closing Remarks & Next Steps

Activity / Small Group Table Discussions
- Time ~ 60 mins
- Table facilitators and recorders to help participants
- Input obtained during activity and in response to specific questions (not yet determined)
- Other likely meeting components would include video booth, comment cards, and display boards

Initial Discussion of Public Meeting #3 September 5, 2013

- Are there any specific ideas about you have about:
 - CTF roles in the event?
 - Format of the event or table activities?
 - Overall content and discussion?

Call to the Audience

10 Minutes

Please limit comments to 3 minutes

- Called forward in order received
- CTF members cannot discuss matters raised
- CTF cannot take action on matters raised
- CTF members can ask project team to review an item
Next Steps/Roundtable

Jenn Toothaker

Upcoming Meetings: Thursday, June 20, 2013 & Thursday, July 25, 2013 (5:30-8:30 p.m., Child & Family Resources)

• June 20th CTF Agenda to include (in addition to standard agenda items):
 — Informational Presentations
 • BRT Update
 • Downtown Links and Ronstadt Transit Center Update
 — Review of input from Technical Advisory Committee
 — Review and Endorse potential cross sections and assessments for Stakeholder Agency review
 — (Possible) Update/Endorsement of September Public Meeting Planning

• July 25th CTF Agenda to include (in addition to standard agenda items):
 — Informational Presentations
 • Universal Design and ADA
 • Corridor Economic Development & TOD
 — Update on Stakeholder Agency review
 — Discussion/Endorsement of September Public Meeting Format

Thank You for Coming — Please Stay in Touch!

Broadway: Euclid to Country Club
Web: www.tucsonaz.gov/broadway
Email: broadway@tucsonaz.gov
Info Line: 520.622.0815

RTA Plan
www.rtamobility.com