This Annual Water Quality Report provides information on your drinking water. The United States Environmental Protection Agency (EPA) requires that all drinking water suppliers provide a water quality report to their customers on an annual basis. This report also contains important information on the quality of your water and contact information you may wish to use.

WHERE DOES MY WATER COME FROM?
Vallejo View is a small community public water system located north of Hilltop Road, just west of Sandario Road, with 158 services supplying approximately 442 people with water from two wells, F-001C and F-003A. The system was upgraded in the 1990s by adding the Hilltop reservoir.

WERE THERE ANY CONTAMINANTS DETECTED IN MY DRINKING WATER?
Tucson Water continuously monitors the drinking water that is delivered to you to comply with regulations set by the EPA. In addition to this required monitoring, Tucson Water performs a great deal of discretionary monitoring to provide both staff and customers with additional water quality information. We are pleased to report that the results from the monitoring conducted in 2020 met all standards for safe drinking water. In most cases, the minimum detection level of a contaminant is well below the EPA regulatory limit for that contaminant. Tables list the contaminants that were detected in the required drinking water monitoring period. To compare the detected amount with the highest level allowed by the EPA, refer to the Maximum Contaminant Level (MCL) column in the table. Most regulated contaminants were not detected in the drinking water delivered by Tucson Water and those non-detected results are not included in the tables. For a complete list of all EPA regulated contaminants, contact the EPA at 1-800-426-4791 or visit the EPA website at www.epa.gov/sites/production/files/2016-06/documents/npwwdr_complete_table.pdf.

WHY ARE THERE CONTAMINANTS IN MY DRINKING WATER?
All drinking water, including bottled water, may reasonably be expected to contain small traces of some contaminants. Tucson’s groundwater contains dissolved minerals and organic compounds, which have been leached from the soil, rock, sediments, and plant materials through which the water travels. One would expect to find beneficial minerals such as calcium and magnesium; harmless minerals such as chloride, bicarbonate, and sulfate; and metals such as iron, copper, arsenic, and lead, which may be either beneficial or harmless at low concentrations, but harmful at high concentrations. In addition to these naturally occurring contaminants, our groundwater may contain contaminants resulting from industrial or domestic activities. For this reason, water utilities must currently monitor for approximately 90 regulated and 31 unregulated contaminants. The following language is required by the EPA to appear in this report, some of which may not be applicable to deep groundwater wells, the primary source of the Tucson Water supply:

Contaminants that may be present in source water can include:
• Microbial contaminants, such as viruses and bacteria, which may come from sewage, septic systems, agricultural livestock, and wildlife.
• Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
• Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
• Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
• Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, EPA regulations limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Bottled water may come from either a surface water source or groundwater source and may be treated minimally or extensively. For information on the quality of your bottled water, contact the water bottling company.
Uranium is a metallic, naturally occurring element which is highly toxic and radioactive. The highest concentration for uranium during 2020 was 27 ppb (the MCL is 30 ppb).

Lead and Copper are naturally occurring metals which are generally found at very low levels in source waters. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Tucson Water is responsible for providing high-quality drinking water but cannot control the variety of materials used in private plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water. The required lead and copper monitoring was performed during 2019. The 90th percentile value was 1 ppb for lead (Lead Action Level is 15 ppb) and 0.147 ppm for copper (Copper Action Level is 1.3 ppm). Both lead and copper 90th percentiles were below their respective Action Level.

Exposure to lead in drinking water can cause serious health effects in all age groups. Infants and children can have decreases in IQ and attention span. Lead exposure can lead to new learning and behavior problems or exacerbate existing learning and behavior problems. The children of women who are exposed to lead before or during pregnancy can have increased risk of these adverse health effects. Adults can have increased risks of heart disease, high blood pressure, kidney, or nervous system problems.

Sodium is the sixth most abundant element on Earth and is widely distributed in soils, plants, water, and food. A goal of 2,300 mg/day dietary sodium has been proposed by several government and health agencies. Drinking water containing between 30 and 60 ppm would contribute only 2.5% to 5% of the dietary goal if tap water consumption is 2 liters per day. Currently, there is no MCL for sodium in drinking water. The recommended EPA guidance level for individuals on a very low sodium diet (50 mg/day) is 20 ppm in drinking water. The highest sodium concentration in Tucson water during 2019 was 15 ppm. Drinking water does not play a significant role in sodium exposure for most individuals. Those who are under treatment for sodium-sensitive hypertension should consult with their healthcare provider regarding sodium levels in their drinking water supply and the advisability of using an alternative water source or point-of-use treatment to reduce the sodium.

Disinfection Byproducts

TDSALTRNACTIONaSHEMATIQT (THMAs) are formed when chlorine combines with naturally occurring organic material in water. Since the level of organic matter in your groundwater is extremely low, these compounds are found at very low concentrations. The compounds which make up the THMAs include: bromodichloromethane, bromoform, chlorodibromomethane, and chloroform. Some people who drink THMAs in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer. The maximum THMAs detected in 2020 was 64.2 ppb (the MCL is 80 ppb).

Arsenic is a naturally occurring substance commonly found in groundwater in the southwestern United States. While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic. Some people who drink water containing arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system and may have an increased risk of getting cancer. The highest arsenic concentration detected during 2019 was 1.8 ppb (the MCL is 10 ppb).

Barium occurs naturally at very low concentrations in our groundwater. The highest barium value during 2019 was 0.53 parts per million (ppm) (the MCL is 2 ppm).

Fluoride is an important naturally occurring mineral that helps form healthy teeth and bones. A concentration of 1 ppm is considered optimum. Some people who drink water containing fluoride in excess of the MCL over many years could get bone disease, including pain and tenderness of the bones. Fluoride in drinking water at half the MCL or more may cause mottling of children's teeth, usually in children less than nine years old. Mottling, also known as dental fluorosis, may include brown staining and/or pitting of the teeth, and occurs only in developing teeth before they erupt from the gums. The highest concentration of fluoride detected during 2019 was 0.59 ppm (the MCL is 4 ppm).

Nitrate occurs naturally at very low concentrations in our groundwater. The highest nitrate value during 2019 was 1.4 ppm (the MCL is 10 ppm).

Lead is a naturally occurring substance commonly found in groundwater in the southwestern United States. While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic. Some people who drink water containing arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system and may have an increased risk of getting cancer. The highest arsenic concentration detected during 2019 was 1.8 ppb (the MCL is 10 ppb).

Barium occurs naturally at very low concentrations in our groundwater. The highest barium value during 2019 was 0.53 parts per million (ppm) (the MCL is 2 ppm).

Fluoride is an important naturally occurring mineral that helps form healthy teeth and bones. A concentration of 1 ppm is considered optimum. Some people who drink water containing fluoride in excess of the MCL over many years could get bone disease, including pain and tenderness of the bones. Fluoride in drinking water at half the MCL or more may cause mottling of children's teeth, usually in children less than nine years old. Mottling, also known as dental fluorosis, may include brown staining and/or pitting of the teeth, and occurs only in developing teeth before they erupt from the gums. The highest concentration of fluoride detected during 2019 was 0.59 ppm (the MCL is 4 ppm).

Nitrate occurs naturally at very low concentrations in our groundwater. The highest nitrate value during 2019 was 1.4 ppm (the MCL is 10 ppm).

Fluoride is an important naturally occurring mineral that helps form healthy teeth and bones. A concentration of 1 ppm is considered optimum. Some people who drink water containing fluoride in excess of the MCL over many years could get bone disease, including pain and tenderness of the bones. Fluoride in drinking water at half the MCL or more may cause mottling of children's teeth, usually in children less than nine years old. Mottling, also known as dental fluorosis, may include brown staining and/or pitting of the teeth, and occurs only in developing teeth before they erupt from the gums. The highest concentration of fluoride detected during 2019 was 0.59 ppm (the MCL is 4 ppm).

Nitrate occurs naturally at very low concentrations in our groundwater. The highest nitrate value during 2019 was 1.4 ppm (the MCL is 10 ppm).
The annual average for twelve months of 2020 was 0.76 ppm. The level of chlorine residual disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. MRDLGs allow for a margin of safety. The highest level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Some compounds of chlorine are measured in very small units. One ppb equals one microgram per liter. One part per billion equals 2 drops of water in a 15,000-gallon backyard swimming pool, one second of time in 11.6 days. One ppm equals one milligram per liter. For example, one part per billion equals: 1 part per billion equals: The concentration of a contaminant, which, if exceeded, triggers a treatment or other requirement which a water system must follow. Entry Point to the Distribution System (EPDS) All water sources are monitored at the entry point to the distribution system before the first customer but after any required treatment. Maximum Contaminant Level (MCL) The highest level of a contaminant that is established by the EPA allowed in drinking water. MCLs are set as close as practical to zero and at an acceptable level of risk. Generally, the maximum acceptable risk of cancer is 1 in 100,000 with 70 years of exposure. Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. The groundwater delivered by Tucson Water meets all drinking water standards from the time it is pumped from the ground until it reaches the customer’s tap. People who drink water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the Maximum Residual Disinfectant Limit (MRDL) could experience stomach discomfort or anemia. Chlorine Residual Disinfectant is maintained throughout the distribution system. Approximately 1 ppm of chlorine is added to the drinking water supply at well sites, reservoirs, and other facilities to provide assurance that water delivered to customers will remain free of microbiological contamination. This also ensures that the water meets microbiological drinking water standards from the time it is pumped from the ground until it reaches the customer’s tap. Some people who use water containing chlorine in excess of the MRDL could experience stomach discomfort or anemia. Chlorine Residual Disinfectant is measured from sample stations where the bacteriological samples are collected monthly. The annual chlorine residual disinfectant is calculated using the monthly chlorine averages for the past 12 months. The annual average for twelve months of 2020 was 0.76 ppm. The maximum monthly average was 1.14 ppm (the MRDL is 4 ppm).

Chlorine Residual Disinfection is maintained throughout the distribution system. Approximately 1 ppm of chlorine is added to the drinking water supply at well sites, reservoirs, and other facilities to provide assurance that water delivered to customers will remain free of microbiological contamination. This also ensures that the water meets microbiological drinking water standards from the time it is pumped from the ground until it reaches the customer’s tap. Some people who use water containing chlorine in excess of the MRDL could experience stomach discomfort or anemia. Chlorine Residual Disinfectant is measured from sample stations where the bacteriological samples are collected monthly. The annual chlorine residual disinfectant is calculated using the monthly chlorine averages for the past 12 months. The annual average for twelve months of 2020 was 0.76 ppm. The maximum monthly average was 1.14 ppm (the MRDL is 4 ppm).

SOURCE WATER ASSESSMENT PROGRAM (SWAP)

The Arizona Department of Environmental Quality (ADEQ) completed a source water assessment for Tucson Water drinking water wells. This assessment reviewed the adjacent land uses that may pose a potential risk to the water sources. These risks include, but are not limited to, gas stations, landfills, dry cleaning, agricultural fields, wastewater treatment plants, and mining activities. The water sources for this system are categorized as “low risk of contamination from human activities.”

Low Risk: Based on the information currently available on the hydrogeological settings of and the adjacent land uses that are in the specified proximity of the drinking water source(s) of this public water systems, the Arizona Department of Environmental Quality has given a low risk designation for the degree to which this public water system drinking water source(s) are protected. A low risk designation indicates that most source water protection measures are either already implemented, or the hydrogeology is such that the source water protection measures will have little impact on protection.

Tucson Water ensures the safety of our drinking water by conducting regular monitoring of all sources. If any contamination approaches the drinking water MCL, the source is removed from service. Residents can help protect our water sources by practicing good septic system maintenance, limiting pesticide and fertilizer use, and by taking hazardous household chemicals to the House-hold Hazardous Waste Program locations (visit www.tucsonaz.gov/en/household-hazardous-waste or call (520) 791-3171).

Source Water Assessments on file with the ADEQ are available for public review. You may obtain a copy by contacting the Arizona Source Water Coordinators at (602) 771-4597 or (602)771-4298.

PERFLUORINATED COMPOUNDS (PFOS & PFAS)

In May 2016, the EPA issued a revised Health Advisory for the perfluorinated compounds perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). The lifetime health advisory for each compound is 70 parts per trillion or ppt, which is equivalent to such compound individually or in combination.

In December, 2019, Tucson Water enhanced its voluntary, proactive operational policy, which protects public health, by removing wells from service that exceed 18 ppt for the PFAS compounds PFOA, PFOS, Perfluorooctanesulfonic acid (PFHxS) and Perfluorooctanoic acid (PFHxA).

In addition, PFHxS not to exceed 200,000 ppt and PFBS not to exceed 420 ppt. Wells with PFOA, PFOS, PFHxS and PFHpA detections less than 18 ppt are placed in a standby mode on a last-on, first-off basis. In 2020, Tucson Water continued to investigate and assess its system for PFAS detections by collecting and analyzing over 1,555 samples. More information can be found at www.epa.gov/ground-water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfas.

DRINKING WATER TERMS AND DEFINITIONS:

- **Action Level**
- **Picocurie Per Liter (pCi/L)**
 - Picocurie is the quantity of radioactive material in one liter which produces 2 nuclear disintegrations per minute in a backyard swimming pool; or one second of time in 11.6 days.
 - One ppm equals one milligram per liter or 1,000 times more than a ppb.
- **Parts Per Billion (ppb)**
 - For example, one part per billion equals: 2 drops of water in a 15,000-gallon backyard swimming pool, one second of time in 11.6 days. One ppm equals one microgram per liter. One part per million equals: 1/4 cup of water in a typical 15,000-gallon backyard swimming pool; or one second of time in 11.6 days.
- **Picocurie Per Liter (pCi/L)**
 - Picocurie is the quantity of radioactive material in one liter which produces 2 nuclear disintegrations per minute. More information about contaminants and potential health effects can be obtained by calling EPA’s Safe Drinking Water Hotline 1-800-426-4791.

PRECAUTIONS?

The groundwater delivered by Tucson Water meets all drinking water standards without treatment. However, approximately 1 ppm of chlorine is added to the drinking water supply at well sites, reservoirs, and other facilities to provide assurance that water delivered to customers will remain free of microbiological contamination. This also ensures that the water meets microbiological drinking water standards from the time it is pumped from the ground until it reaches the customer’s tap.

DO I NEED TO TAKE SPECIAL PRECAUTIONS?

While the Safe Drinking Water Act regulations are intended to protect consumers throughout their lifetime, some people may be more vulnerable to infections from drinking water than the general population. These “at-risk” populations include immunocompromised persons such as persons with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, and in some cases, elderly people, and infants. These people should seek advice about drinking water from the healthcare providers, EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the EPA’s Safe Drinking Water Hotline (1-800-426-4791).

As a Tucson Water customer, you have the right to know that this data is available. If you are interested in examining the results, please contact the Water Quality and Operations Division at (520) 791-2544.

WERE THERE ANY MONITORING FAILURES OR VIOLATIONS?

At the end of each quarter, Tucson Water conducts an internal audit of compliance monitoring records to verify that all required monitoring has been completed and reported to the State. During 2020, there were no reporting violations, health-based violations, or monitoring violations.

HOW IS OUR DRINKING WATER TREATED?

The groundwater delivered by Tucson Water meets all drinking water standards without treatment. However, approximately 1 ppm of chlorine is added to the drinking water supply at well sites, reservoirs, and other facilities to provide assurance that water delivered to customers will remain free of microbiological contamination. This also ensures that the water meets microbiological drinking water standards from the time it is pumped from the ground until it reaches the customer’s tap.

The groundwater delivered by Tucson Water meets all drinking water standards without treatment. However, approximately 1 ppm of chlorine is added to the drinking water supply at well sites, reservoirs, and other facilities to provide assurance that water delivered to customers will remain free of microbiological contamination. This also ensures that the water meets microbiological drinking water standards from the time it is pumped from the ground until it reaches the customer’s tap.

The groundwater delivered by Tucson Water meets all drinking water standards without treatment. However, approximately 1 ppm of chlorine is added to the drinking water supply at well sites, reservoirs, and other facilities to provide assurance that water delivered to customers will remain free of microbiological contamination. This also ensures that the water meets microbiological drinking water standards from the time it is pumped from the ground until it reaches the customer’s tap.

The groundwater delivered by Tucson Water meets all drinking water standards without treatment. However, approximately 1 ppm of chlorine is added to the drinking water supply at well sites, reservoirs, and other facilities to provide assurance that water delivered to customers will remain free of microbiological contamination. This also ensures that the water meets microbiological drinking water standards from the time it is pumped from the ground until it reaches the customer’s tap.
WHOM DO I CONTACT FOR MORE INFORMATION?

For more information, questions, comments on this Tucson Annual Water Quality report or on water quality topics in your neighborhood, please contact our water quality concerns team at (520) 791-5945 or email CustomerSupportUnit@tucsonaz.gov. Tucson Water’s Water Quality Information Net program provides timely information about the quality of tap water in your neighborhood at https://tucsonaz.gov/water/water-quality. Use this link to see water quality tests closest to your home or business using our Online Water Quality Map.

Tucson’s Mayor and Council set policy and direction for Tucson Water, including those policies that may impact water quality. Mayor and Council meetings are normally held every other Tuesday and are open to the public. Mayor and Council meeting schedule, agendas, and other opportunities for public comments are published at www.tucsonaz.gov/gov/meeting-schedules-and-agendas.

Tucson Water customers may leave a message for the Mayor and Council at (520) 791-4201.

To schedule a tour of Tucson Water’s Water Quality Laboratory or a speaker for your organization, contact the Public Information Office at (520) 791-4331 or email pico@tucsonaz.gov.

Tucson Water is committed to ensuring that our customers receive high quality water and excellent service in a safe, reliable, efficient, and environmentally responsible manner.

CONTACT INFORMATION:

Tucson Water Public Information Office (520) 791-4331
Tucson Water Quality & Operations Division (520) 791-2544
Tucson Water Customer Support Unit (520) 791-5945
Tucson Water Customer Service/Billing (520) 791-3242
Tucson Water 24-hour Emergency (520) 791-4133
EPA Safe Drinking Water Hotline 1-800-426-4791
EPA Website epa.gov/ground-water-and-drinking-water
Si usted desea este documento escrito en Español, por favor, llame al (520) 791-4331
City of Tucson TTY# (520) 791-2639